II The Error - Statistical Philosophy
نویسنده
چکیده
Despite the challenges to and changes in traditional philosophy of science, one of its primary tasks continues to be to explain if not also to justify, scientific methodologies for learning about the world. To logical empiricist philosophers (Carnap, Reichenbach) the task was to show that science proceeds by objective rules for appraising hypotheses. To that end many attempted to set out formal rules termed inductive logics and confirmation theories. Alongside these stood Popper’s methodology of appraisal based on falsification: evidence was to be used to falsify claims deductively rather than to build up inductive support. Both inductivist and falsificationist approaches were plagued with numerous, often identical, philosophical problems and paradoxes. Moreover, the entire view that science follows impartial algorithms or logics was challenged by Kuhn (1962) and others. What methodological rules there are often conflict and are sufficiently vague as to “justify” rival hypotheses. Actual scientific debates often last for several decades and appear to require, for their adjudication, a variety of other factors left out of philosophers’ accounts. The challenge, if one is not to abandon the view that science is characterized by rational methods of hypothesis appraisal, is either to develop more adequate models of inductive inference or else to find some new account of scientific rationality. (Mayo, 1996, p. ix)
منابع مشابه
Error Statistics
To adequately appraise the error statistical approach, and compare it to other philosophies of statistics, requires understanding the complex interconnections between the methodological and philosophical dimensions in (1) and (2) respectively. To make this entry useful while keeping to a manageable length, we restrict our main focus to (1) the error statistical philosophy. We will however aim t...
متن کاملA Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection
The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. This paper presents a comparison of the Mahalanobis-Taguchi System and a standard statistical technique for defect detection ...
متن کاملStatistical Inference for the Lomax Distribution under Progressively Type-II Censoring with Binomial Removal
This paper considers parameter estimations in Lomax distribution under progressive type-II censoring with random removals, assuming that the number of units removed at each failure time has a binomial distribution. The maximum likelihood estimators (MLEs) are derived using the expectation-maximization (EM) algorithm. The Bayes estimates of the parameters are obtained using both the squared erro...
متن کاملEstimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring
In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...
متن کاملThe error-statistical philosophy and the practice of Bayesian statistics: comments on Gelman and Shalizi: 'Philosophy and the practice of Bayesian statistics'.
I am pleased to have the opportunity to comment on this interesting and provocative paper. I shall begin by citing three points on which the authors happily depart from existing work on statistical foundations. First, there is the authors’ recognition that methodology is ineluctably bound up with philosophy. ‘If nothing else, ... strictures derived from philosophy can inhibit research progress’...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011